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Introduction

Consider the stochastic differential equation (defined in the Itô sense),

dyt = f(yt)dt+
d∑
i=1

g i(yt)dW
(i)
t , (1)

where f, g i : Rn → Rn are each smooth and bounded vector fields onRn

and W = {Wt} denotes a standard d-dimensional Brownian motion.

SDEs can model random time-evolving systems and have applications
ranging from finance [1] to statistical physics and machine learning [2].

We use the notation Xs,t := Xt − Xs to denote increments of a process X
and for vectors A,B ∈ Rm, we write A⊗ B = {Ai Bj}1≤ i, j≤m.
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Introduction

There are two particularly well-known numerical methods for Itô SDEs:

• Euler-Maruyama method

Yk+1 := Yk + f(Yk) (tk+1 − tk) +
d∑

i=1

g i(Yk)
(
W (i)
tk+1

−W (i)
tk

)
• Milstein’s method

Yk+1 := Yk + f(Yk) (tk+1 − tk) +
d∑

i=1

g i(Yk)
(
W (i)
tk+1

−W (i)
tk

)
+

d∑
i, j=1

g ′
j (Yk)g i(Yk)

∫ tk+1

tk

(
W (i)
t −W (i)

tk

)
dW (j)

t
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Introduction

Definition (Strong convergence)
Let Y = {Yk}0≤k≤N denote a numerical solution with N steps and h = T

N .
Then Y is said to converge strongly to the solution of (1) with order α
if there exists C > 0 such that

E
[∥∥Yk − y(tk)

∥∥2
2

] 1
2 ≤ Chα,

for all k ∈ {0, 1, · · · ,N} and sufficiently small h (where tk := kh).

Theorem (Cameron & Clark [3] and Dickinson [4])
Numerical approximations using only increments (or linear functionals)
of Brownian motion achieve at best a strong convergence rate of O(h

1
2 ).

Theorem (Milstein & Tretakov [5])
For smooth f and g i , Milstien’s method converges strongly with order 1.
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Introduction

Therefore, if we could accurately generate the iterated integrals in the
Milstein method, then we would obtain significantly faster convergence
(e.g. 100 steps instead of 10,000 steps).

Using Itô’s lemma, we can rewrite iterated integrals as the sum of a
(tractable) symmetric term and an (intractable) antisymmetric term.

Theorem (Decomposition of second iterated integrals)∫ t

s

(
W (i)
u −W (i)

s
)
dW (j)

u =
1

2

((
W (i)
t −W (i)

s
)(
W (j)
t −W (j)

s
)
−(t−s)δi j

)
+A(i, j)

s,t ,

where δi j is the Kronecker delta and As,t is an antisymmetric matrix with

A(i, j)
s,t :=

1

2

(∫ t

s

(
W (i)
u −W (i)

s
)
dW (j)

u −
∫ t

s

(
W (j)
u −W (j)

s
)
dW (i)

u

)
. (2)
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Introduction

Definition
The Lévy area of a standard d-dimensional Brownian motion over an
interval [s, t] is the antisymmetric d× dmatrix As,t given by (2).

 

 

𝑊ሺ𝑗ሻ 

 

𝑊ሺ𝑖ሻ 

Figure: Each entry A(i, j)
s,t can be understood as the chordal area between the

independent Brownian motionsW (i) andW (j) (diagram adapted from [6]).
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Approximations so far...

Lévy area Strong convergence rate
approximation (with N random variables)

Exact [7] (d = 2) N/A

Fourier Series [8, 9] ∼ 1
π

1√
N(with correlation)

Fourier series [9, 10] ∼
√
3

π
1√
N(ignoring correlation)

Polynomial [11, 12] ∼ 1
2
√
2

1√
N

“Moment matching” O( 1N)
∗

[6, 13, 14, 15, 16, 17]

∗ This faster convergence rate requires non-trivial couplings,
which means that the asymptotic constants are unknown.
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Generating Lévy area with machine learning
Since we expect Lévy area to have a smooth “bell shaped” distribution,
it may be reasonable to consider learning-based generative models.

For example, we can use a conditional Generative Adversarial Network
(GAN), trained on a dataset of “finely discretized” Lévy area samples.

Generating accurate Lévy areas is expensive, but can certainly be done!
(e.g. using the Julia package [18])
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Generating Lévy area with machine learning

This works... but can we exploit the properties of Lévy Area?

• Independence ofW (i) andW (j) (when i 6= j).

• Relationship between increments and areas

A(i, j)
s,t = H (i)

s,tW
(j)
s,t −W (i)

s,t H
(j)
s,t + b(i, j)s,t ,

where Hs,t ,bs,t depend on the Brownian bridge (independent ofWs,t).

• Unbiasedness of Lévy area

E
[
A(i, j)
s,t

∣∣Ws,t
]
= 0.

• Self-similarity of Brownian motion and Lévy area

A(i, j)
s,t = A(i, j)

s,u +
1

2

(
W (i)
s,uW

(j)
u,t −W (j)

s,uW
(i)
u,t

)
+ A(i, j)

u,t .
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Incorporating structure and unbiasedness

Underlying our generator is the following property about Lévy area:

Theorem (Decomposition of Brownian Lévy area)

As,t = Hs,t ⊗Ws,t −Ws,t ⊗ Hs,t + bs,t , (3)

where Ws,t ∼ N d(0, (t− s)
)
,Hs,t ∼ N d(0, 1

12(t− s)
)
and bs,t are given by

Ws,t := Wt −Ws ,

Hs,t :=
1

t− s

∫ t

s

((
Ws −Wu

)
− u− s

t− s
Ws,t

)
du,

b(i, j)s,t :=

∫ t

s
B (i)
s,u dB

(j)
u ,

with Bs,u := Ws,u − u−s
t−sWs,t denoting the associated Brownian bridge.
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Incorporating structure and unbiasedness

Unsurprisingly, the following all have the same “Lévy area” distribution
(conditional onWs,t ):

As,t := Hs,t ⊗Ws,t −Ws,t ⊗ Hs,t + bs,t

Âs,t :=
(
− Hs,t

)
⊗Ws,t −Ws,t ⊗

(
− Hs,t

)
+ bs,t

As,t :=
(
− Hs,t

)
⊗Ws,t −Ws,t ⊗

(
− Hs,t

)
− bs,t = −As,t

The middle term is obtained by “flipping” the Brownian bridge B 7→ −B.
The last uses symmetry of the “Brownian bridge Lévy area” distribution.

Can we incorporate these symmetries into our generator?
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Incorporating structure and unbiasedness

Therefore, we propose a “bridge-flipping” generator of the form:

BF
(
w, h,b, ξ0 , ξ

)(i, j)
= ξ0

((
ξ(i)h(i)

)
w(j) − w(i)(ξ(j)h(j))+ ξ(i)ξ(j)b(i, j)

)
,

where ξ0 and ξ(1), · · · , ξ(d) are independent Rademacher variables,
w(1), · · · ,w(d) are Brownian increments, h(i) ∼ N

(
0, 1

12(t− s)
)
and

b(i, j) := NNθ

((
h(i), z(i)), (h(j), z(j)

))
, (4)

with z(1), · · · , z(d) ∼ N (0, 1) denoting latent Gaussian noise.

The above “pairwise” neural network is based on the fact that each
Lévy area b(i, j)s,t only depends on the Brownian bridges B(i) and B(j).
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Incorporating structure and unbiasedness

Figure: Schematic of the “PairNet and Bridge-Flipping” generator when d = 3.
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Incorporating structure and unbiasedness

Theorem
Conditional on the Brownian increment W0,1 , both the Lévy area A0,1 and
the output of the “Bridge-Flipping” generator have zero odd moments.

This generator’s unbiasedness is particularly helpful for SDE numerics.

Theorem
Milstien’s method with “fake” Lévy area converges strongly with rate 0.5
provided that the “fake” Lévy area has mean zero and O(h2) covariance.

On the other hand, if the fake Lévy area has an O(h) expectation, then
the resulting biases can “add up” over time and result in an O(1) error!

But how is the generator actually trained...
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Training based on Brownian motion’s self-similarity

Chen’s relation allows us to “combine” Lévy areas over two intervals.

Theorem (Chen’s relation for (second) iterated integrals)

Ws,t = Ws,u +Wu,t ,

As,t = As,u +
1

2

(
Ws,u ⊗Wu,t −Wu,t ⊗Ws,u

)
+ Au,t︸ ︷︷ ︸

:=Chen((Ws,u ,As,u), (Wu,t ,Au,t))

.

By the self-similarity / scaling property of Brownian motion, we want

Gθ

(
W0,1 , z

)
∼ Chen

((
W0, 1

2
,
1

4
Gθ

(
W̃0, 1

2
, z̃

))
,
(
W 1

2
,1 ,

1

4
Gθ

(
W̃ 1

2
,1 , ẑ

)))
,

where Gθ is our generator, W̃a,a+ 1
2
:=

√
2Wa,a+ 1

2
∼ N (0, 1) are rescaled

Brownian increments and z, z̃, ẑ ∼ N (0, 1) denote latent Gaussian noise.
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Training based on Brownian motion’s self-similarity

Therefore, we propose an adversarial “Chen training” for our model:

min
θ
max

ϕ

(
Loss

(
θ, ϕ,w

))
,

withw ∈ RN×d denoting N samples of the incrementW0,1 ∼ N (0, 1),
and the parametrized loss function is given by

Loss
(
θ, ϕ,w

)
:=

1

M

M∑
i=1

∥∥∥Dϕi

(
w,Gθ(w)

)
− Dϕi

(
wChen ,Gθ(wChen)

)∥∥∥,
where each discriminator Dϕi is a “unitary characteristic function”,
but with the expectation computed empirically at points given by ϕi .

See preprint for further details... (including a Theorem!)
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Training based on Brownian motion’s self-similarity

Figure: Schematic of the adversarial “Chen Training”.
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Numerical results in low dimensions

Architecture of generator
• Feed-forward NN with 3 hidden layers and 16 hidden dimensions.
• LeakyRelu activation function with slope = 0.01.
• Latent Gaussian noise with dimension 3.

Test Metric LévyGAN Foster [6] Davie [14] Fourier [18]

Computational
0.019 0.0071 0.002 3.1time (seconds)

Marginal
.246± .013 .254± .010 2.03± .013 .27± 0.0082-Wasserstein

error (10−2)

Table: Computational times for generating 220 samples with different models.
The marginal error is calculated using Python Optimal Transport package [19].
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Numerical results in low dimensions

We also estimate errors relating to the joint distribution of Lévy area.

d Test Metric LévyGAN Foster [6] Davie [14]

2
Fourth Moment .004± .002 .002± .002 .042± .001

Polynomial MMD (10−5) .341± .070 .654± .131 .646± .188

Gaussian MMD (10−6) 1.47± .125 1.44± .128 34.6± .683

3
Fourth Moment .004± .002 .004± .002 .043± .001

Polynomial MMD (10−5) 2.18± .568 2.30± .732 2.26± .773

Gaussian MMD (10−6) 1.87± .002 1.84± .001 16.3± .001

4
Fourth Moment .004± .000 .006± .002 .043± .002

Polynomial MMD (10−5) 4.04± .436 4.65± 1.31 5.62± .808

Gaussian MMD (10−6) 1.90± .001 1.90± .001 263± .003
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Achieving high order convergence in practice

We consider the Heston model (a popular SDE in mathematical finance):

dSt = µSt dt+
√
νtSt dW

(1)
t ,

dνt = κ
(
θ − νt

)
dt+ σ

√
νt dW

(2)
t ,

where the parameters µ, κ, θ, σ > 0 satisfy Feller’s condition σ2 < 2κθ,
which ensures the stochastic volatility term νt remains strictly positive.

Our goal is to compute the price of a call option at maturity time T > 0,

E
[
φ(ST)|(S0, ν0)

]
,

where the payoff φ is

φ(St) := e−rTmax
(
ST − K, 0

)
,

with r ∈ R and K > 0 denoting the interest rate and strike price.

James Foster (University of Bath) Generative modelling of Lévy area 14 April 2024 19 / 30



Achieving high order convergence in practice
Instead of Milstein’s method, which only has O(h) weak convergence,
we use the “Strang-log-ODE” splitting [20]

(
strong O(h), weak O(h2)

)
.

This involves generating an increment and Lévy area before solving a
sequence of ODEs (which can be done explicitly for the Heston model).
We use Multilevel Monte Carlo (MLMC) to achieve variance reduction.

Figure: Variance and empirical error vs standard [21] and antithetic MLMC [22]
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Achieving high order convergence in practice

But, “fake” Lévy area does introduce a fixed bias in the MLMC estimator.

To demonstrate this, we compare against Talay’s approximation [17],
which simply replaces each A(i, j)

tk ,tk+1
with a Rademacher (scaled by 1

2h).

Figure: Variance and empirical error for different generative Lévy area models.
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Achieving high order convergence in practice

Given a target accuracy of ε, MLMC with a LévyGAN-enabled high order
method can achieve the desired error faster than a standard approach.

Target root mean Time taken by Milstein Time taken by Strang
squared error for with antithetic MLMC log-ODE with LévyGAN
a call option price (seconds) (seconds)

0.1 0.0097 0.0102

0.0441 0.0256 0.0128
0.0129 0.376 0.142
0.0086 1.03 0.311
0.0057 2.86 0.806
0.0038 8.63 2.25
0.0025 23.6 5.83

James Foster (University of Bath) Generative modelling of Lévy area 14 April 2024 22 / 30



Outline

1 Introduction

2 Generating Lévy area with machine learning

3 Numerical results in low dimensions

4 Achieving high order convergence in practice

5 Conclusion and future work

6 References

James Foster (University of Bath) Generative modelling of Lévy area 14 April 2024 22 / 30



Conclusion and future work

Conclusion

• We introduce “LévyGAN”, a Generative Adversarial Network (GAN)
for generating the Lévy area of multidimensional Brownian motion.

• We incorporate symmetries of Lévy area into the model & training.

• We show that LévyGAN can lead to high order weak convergence
and variance reduction in practice (that is, the MLMC bias is small).

Future work

• A learnt “Lévy construction” for Brownian motion and its Lévy area.
This would enable higher order adaptive solvers for general SDEs.

• “Space-space-time” Lévy area [23] (e.g. for SDEs with scalar noise).
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Thank you
for your attention!

and our preprint can be found at:

A. Jelinčič, J. Tao, W. F. Turner, T. Cass, J. Foster and H. Ni, Generative
Modelling of Lévy Area for High Order SDE Simulation,
arxiv:2308.02452, 2023.
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